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Abstract
Wu and Yu recently examined point interactions in one dimension in the form
of the Fermi pseudo-potential. On the other hand there are point interactions in
the form of self-adjoint extensions (SAEs) of the kinetic energy operator. We
examine the relationship between the point interactions in these two forms in
the one-channel and two-channel cases. In the one-channel case the pseudo-
potential leads to the standard three-parameter family of SAEs. In the two-
channel case the pseudo-potential furnishes a ten-parameter family of SAEs.

PACS numbers: 03.65.−w, 03.65.Nk, 03.65.Ge

1. Introduction

Wu and Yu (WY) recently examined point interactions in one-dimensional quantum mechanics
in the form of the Fermi pseudo-potential [1]. On the other hand there are point interactions
that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy (KE) operator
−(h̄2/2m)∇2. For the SAEs, see, for example [2–5]. Many more papers have appeared
on this subject. We will quote some of those papers in due course as they become relevant
to the context of this paper. WY did not mention the SAE aspect of the point interactions.
The purpose of this paper is to examine the relationship between the point interactions in
the form of the pseudo-potential and the SAEs of the KE operator. We find that the Fermi
pseudo-potential is a convenient device which enables us to obtain SAEs of the KE operator.

We consider one-channel and two-channel cases. In the one-channel case we find an
explicit relation between the Fermi pseudo-potential and the standard three-parameter family
of SAEs. In the two-channel case the pseudo-potential furnishes a ten-parameter family of
SAEs of the KE operator. This result of the two-channel case goes beyond that obtained in a
recent analysis [6].
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We recapitulate WY’s theory of the pseudo-potential in section 2 and some relevant
aspects of the SAEs of the KE operator in section 3. In section 4 we examine the relationship
between the pseudo-potential and the SAEs of the KE operator. In sections 2, 3 and 4 we
assume that there is only one channel. In section 5 we discuss the case in which there are
two coupled channels. The results are summarized in section 6. For notational brevity we
take units such that h̄2/(2m) = 1 where m is the mass of the particle of the system under
consideration.

2. Fermi pseudo-potential

Following WY we consider the time-independent Schrödinger equation in one dimension with
a potential of a nonlocal form

−ψ ′′(x) +
∫ ∞

−∞
dx ′ V (x, x ′)ψ(x ′) = Eψ(x), (1)

where ψ ′′(x) = d2ψ(x)/dx2. For V (x, x ′) WY assumed the Fermi pseudo-potential

V (x, x ′) = g1v1(x, x ′) + g2v2(x, x ′) + g3v3(x, x ′), (2)

where g1, g2 and g3 are real constants and

v1(x, x ′) = δ(x)δ(x ′), v2(x, x ′) = δ′
p(x)δ(x ′) + δ(x)δ′

p(x ′),
(3)

v3(x, x ′) = δ′
p(x)δ′

p(x ′).

The function δ′
p(x) is defined by

δ′
p(x)ψ(x) = δ′(x)ψ̃(x), (4)

where δ′(x) = dδ(x)/dx and

ψ̃(x) =
{

ψ(x) − 1
2 (ψ+ − ψ−) for x > 0,

ψ(x) + 1
2 (ψ+ − ψ−) for x < 0.

(5)

Suffix + (−) refers to the boundary value for x → +0 (x → −0), e.g., ψ+ = ψ(+0). Note
that function ψ̃(x) is continuous at x = 0 and that

ψ̃(0) = 1
2 (ψ+ + ψ−). (6)

It is understood that ψ(x) can be discontinuous at x = 0, i.e., ψ+ �= ψ−. In such a case,
as we discuss in section 4, the product δ′(x)ψ(x) is ill-defined. The product δ′(x)ψ̃(x)

with continuous ψ̃(x), however, is well defined and so is δ′
p(x)ψ(x). Actually the ψ̃(x)

defined above is different from WY’s ψ̃(x) by an additive constant. We explain the reason for
introducing this difference at the end of section 4.

WY solved the Schrödinger equation with the pseudo-potential and determined the
resolvent operator for the equation. They further worked out the S-matrix for the transmission–
reflection problem with the pseudo-potential. If a wave is incident from the left, the
wavefunction can be written as [7]

ψ(x) =
{

eikx + RL e−ikx for x < 0

TL eikx for x > 0,
(7)

where k > 0 is related to the energy by E = k2. The wavefunction of the case in which the
wave is incident from the right can be written in a similar manner, with coefficients TR and
RR . The S-matrix is a 2 × 2 matrix. It is related to T and R by

S =
(

S++ S+−
S−+ S−−

)
=

(
TL RR

RL TR

)
. (8)
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The ± of S++, etc, unlike the ± of ψ± that we introduced in (5), refers to the direction of the
wave propagation. When it is treated in the way as we explain in section 4, pseudo-potential
(2) leads to

S = [
ig3k + 1

2

(
4 − g1g3 + g2

2

)
+ ig1k

−1]−1
( 1

2

(
4 + g1g3 − g2

2

)
ig3k + 2g2 − ig1k

−1

ig3k − 2g2 − ig1k
−1 1

2

(
4 + g1g3 − g2

2

) )
.

(9)

This agrees with WY’s S-matrix given by their (5.12) except that the signs of the terms with
g2 are all reversed. We, however, believe that (9) is correct. Time-reversal invariance holds so
that TL = TR [7]. If g2 = 0 the left–right symmetry holds so that RL = RR . If g2 �= 0, then
RL �= RR . This is because V (x, x ′) �= V (−x,−x ′) in this case. In this connection, see the
few lines below (25).

3. Self-adjoint extensions of the kinetic energy operator

An SAE of the KE operator can be represented by the following boundary condition which
applies to any wavefunction ψ(x) at x = 0 [8–10]:(

ψ ′
+

ψ+

)
= U

(
ψ ′

−
ψ−

)
, U = eiθ

(
α β

δ γ

)
, (10)

where ψ ′ = dψ/dx. It is understood that ψ(x) is twice differentiable except at x = 0. In
general ψ(x) and ψ ′(x) are discontinuous at x = 0. The phase θ and the matrix elements
α, β, γ and δ are all real constants and are subject to the condition

αγ − βδ = 1. (11)

Hence only three of α, β, γ and δ are independent. Condition (11) is necessary and sufficient
for the self-adjointness of the KE operator. (We do not consider cases in which the two
half-spaces of x > 0 and x < 0 are disjoint.)

The boundary condition (10) together with (11) represents a point interaction at the origin.
There are four independent parameters including θ . As was pointed out in [11], however, θ is
redundant. This is so as far as stationary problems are concerned. All that θ does is to introduce
a constant phase difference between ψ(x > 0) and ψ(x < 0). Although the wavefunction
depends on θ , observable quantities like the transmission and reflection probabilities, the
energy eigenvalue and the probability density of a bound state are all independent of θ .
Albeverio et al [12] pointed out that θ corresponds to a singular gauge field concentrated
at the origin and can play a significant role in nonstationary problems. Such an aspect of
nonstationary problems is beyond the scope of this paper. In many-body problems, θ may
have subtle implications in relation to the symmetry of the wavefunction [13, 14], but we do
not consider many-body problems in this paper either. If we require time-reversal invariance
of the point interaction, U and hence eiθ have to be real. In [8–10], θ was set to

eiθ = −1. (12)

We follow this convention in the rest of this paper. In the abstract and section 1 we mentioned
the ‘standard’ three-parameter family of SAEs, which is what we have just reviewed above. If
the interaction is invariant under space reflection x → −x, the boundary condition has to be
invariant under ψ± → ψ∓ and ψ ′

± → −ψ ′
∓. This holds if and only if eiθ is real and α = γ .

Let us mention two special cases. For the usual δ-function potential V (x) = gδ(x) where
g is a real constant, we obtain

U = −
(

α β

δ γ

)
=

(
1 g

0 1

)
, (13)
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i.e., α = −1, β = −g, γ = −1 and δ = 0. The ψ ′(x) is discontinuous at the origin but ψ(x)

is continuous.
The so-called δ′-interaction, which should not be confused with δ′(x) = dδ(x)/dx, is

defined in terms of

U =
(

1 0
h 1

)
, (14)

i.e., α = −1, β = 0, γ = −1 and δ = −h [2, 8–10, 15]. Here h is a real constant. The
ψ(x) is discontinuous at the origin but ψ ′(x) is continuous. These two interactions are both
invariant under space reflection.

The T and R of the transmission–reflection problem are given by (16)–(19) of [10],

TL = TR = −2ik/D, (15)

RL = [β + k2δ + ik(α − γ )]/D, (16)

RR = [β + k2δ − ik(α − γ )]/D, (17)

D = −β + k2δ + ik(α + γ ). (18)

See also (6)–(9) of [11].

4. Fermi pseudo-potential versus self-adjoint extensions of the kinetic energy operator

We can start with the Fermi pseudo-potential and derive the boundary condition on the
wavefunction and its derivative at the origin. We utilize the following two prescriptions which
we denote with A and B, respectively:

A[f (x)] ≡ lim
ε→0

∫ ε

−ε

dx f (x), (19)

B[f (x)] ≡ lim
ε→0

∫ ε

−ε

dx

∫ x

−L

dx ′f (x ′). (20)

It is understood that ε > 0 and L > ε and f (x) is an arbitrary function of x. Applying the
above prescriptions to the terms of the Schrödinger equation (1) we obtain

A[ψ ′′(x)] = ψ ′
+ − ψ ′

− = A
[∫ ∞

−∞
dx ′ V (x, x ′)ψ(x ′)

]
, (21)

B[ψ ′′(x)] = ψ+ − ψ− = B
[∫ ∞

−∞
dx ′ V (x, x ′)ψ(x ′)

]
. (22)

If V (x, x ′) = g1δ(x)δ(x ′), which is equivalent to V (x) = g1δ(x), the above manipulations
are simple and we obtain the well-known boundary condition (13) with g = g1.

At this point let us mention a complication that arises if one assumes the potential
V (x) = gδ′(x) = g dδ(x)/dx or V (x, x ′) = g[δ′(x)δ(x ′) + δ(x)δ′(x ′)]. Then appears the
integral ∫ ε

−ε

dx δ′(x)ψ(x) = [δ(x)ψ(x)]ε−ε −
∫ ε

−ε

dx δ(x)ψ ′(x) (23)
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in prescription A. If ψ(x) is discontinuous at x = 0, ψ ′(x) contains (ψ+ − ψ−)δ(x). Thus
the last integral of (23) becomes (ψ+ −ψ−)δ(0), i.e., it diverges. However, if we replace δ′(x)

with δ′
p(x), we obtain∫ ε

−ε

dx δ′
p(x)ψ(x) =

∫ ε

−ε

dx δ′(x)ψ̃(x)

= [δ(x)ψ̃(x)]ε−ε −
∫ ε

−ε

dx δ(x)ψ̃ ′(x) = −1

2
(ψ ′

+ + ψ ′
−), (24)

where ψ ′
± = ψ ′(±0). In prescription B we also need∫ x

−L

dx ′ δ′
p(x ′)ψ(x ′) = [δ(x ′)ψ̃(x ′)]x−L −

∫ x

−L

dx ′ δ(x ′)ψ̃ ′(x ′)

= 1

2
[δ(x)(ψ+ + ψ−) − θ(x)(ψ ′

+ + ψ ′
−)], (25)

where θ(x) = 1 (0) for x > 0 (x < 0). We have used (6) and δ(−L) = 0. It follows from (24)
that δ′

p(x) is anti-symmetric, i.e., δ′
p(−x) = −δ′

p(x). This leads to v1(x, x ′) = v1(−x,−x ′),
v2(x, x ′) = −v2(−x,−x ′) and v3(x, x ′) = v3(−x,−x ′).

In (24) and (25) we have used
∫ ε

−ε
dx δ(x)f (x) = 1

2 (f+ + f−) which WY also used. This
can be justified by replacing δ(x) with a smooth function of a finite width and then letting
the width tend to zero. Griffiths and Walborn [16] remarked that this prescription involving
δ(x)f (x) does not necessarily hold. But their remark does not apply to the present case. The
f (x) that they considered is not an arbitrarily given function. Rather it depends on ε in a
certain specific manner. Such a situation arises, for example, in dealing with the δ-function
potential in the one-dimensional Dirac equation [17, 18] but not in the situation that we are
considering.

With V (x, x ′) of (2) it is straightforward to work out (21) and (22), which respectively
become

ψ ′
+ − ψ ′

− = 1
2 [g1(ψ+ + ψ−) − g2(ψ

′
+ + ψ ′

−)], (26)

ψ+ − ψ− = 1
2 [g2(ψ+ + ψ−) − g3(ψ

′
+ + ψ ′

−)]. (27)

The above can be written as

C+

(
ψ ′

+

ψ+

)
= C−

(
ψ ′

−
ψ−

)
, C± = 1

2

(
2 ± g2 ∓g1

±g3 2 ∓ g2

)
. (28)

Then U is given by

U = C−1
+ C− = 1

4�

(
(2 − g2)

2 − g1g3 4g1

−4g3 (2 + g2)
2 − g1g3

)
, (29)

where

� = 1
4 [(2 + g2)(2 − g2) + g1g3]. (30)

It is understood that � �= 0. Condition (11) is satisfied. Equation (29) together with (15)–(18)
leads to the S-matrix of (9). Note that α = γ if and only if g2 = 0. WY stated that ‘That
there are three parameters instead of two is a major surprise, . . .’: see a few lines below
WY’s equation (4.7). From the point of view of SAE, however, it is not surprising that point
interactions can have three parameters.

If g1 �= 0 and g2 = g3 = 0, (29) is reduced to (13) with g = g1, i.e., the U for the usual
δ-function potential. If g3 �= 0 and g1 = g2 = 0, we obtain (14) with h = g3, i.e., the U for
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the δ′ interaction. If g2 �= 0 and g1 = g3 = 0, we obtain α = 1/γ = (g2 − 2)/(g2 + 2) and
β = δ = 0. It is interesting (but not surprising) that these α, etc, of the g2 �= 0 case are the
same as those Griffiths obtained by assuming V (x) = cδ′(x) where his c corresponds to our
g2 [16]. See (38) of [10] also. As pointed out in [10], however, there is a problem in Griffiths’
derivation. It stems from what we pointed out below (23). Regarding the δ′(x) potential, [16]
was quoted in [5] but the remark made in [16] is irrelevant with respect to the problem that we
have just mentioned.

The definition of δ′
p(x) with which the pseudo-potential has been constructed may appear

ad hoc and somewhat arbitrary. But it is justified by the fact that the pseudo-potential conforms
to the SAE scheme of the KE operator. Below (5) we said that our ψ̃(x) is different from the
ψ̃(x) that WY defined. Let us denote the latter with ψ̃WY (x). It is related to our ψ̃(x) by

ψ̃WY (x) = ψ̃(x) − ψ̃(0), ψ̃WY (0) = 0. (31)

This difference is unimportant in prescription A but is important in B. (The method of
calculation that WY used is different from ours. They did not use prescriptionB.) If we assume
V (x) = cδ′

p(x), which is equivalent to V (x, x ′) = c[δ′
p(x)δ(x ′) + δ(x)δ′

p(x ′)] = cv2(x, x ′),
and use ψ̃WY (x) rather than ψ̃(x) of (4), we are led to the boundary condition obtained by
Zhao [20]. Zhao’s boundary condition is not acceptable as pointed out in [10, 19, 21].

5. Two-channel case

We now consider the two-channel case. The situation that we have in mind is, there is a point
object fixed at the origin, which is the source of a point interaction and which can be in two
different states, 1 and 2. The particle that interacts with the point object can be described by
means of a wavefunction that has two components [6]

ψ(x) =
(

ψ1(x)

ψ2(x)

)
. (32)

Component 1 (2) is the wavefunction of the particle when the point object is in state 1 (2).
WY advocated potential applications of such a two-channel system as a model of quantum
memory but in this paper we focus on the mathematical aspect of the system. We assume the
boundary condition at x = 0


ψ ′

1+

ψ ′
2+

ψ1+

ψ2+


 = U




ψ ′
1−

ψ ′
2−

ψ1−
ψ2−


 , U = eiθ

(
α β

δ γ

)
, (33)

where ψ ′
1+ = (ψ ′

1)+ = ψ ′
1(+0), etc. Parameter θ is again redundant. We set it to eiθ = −1.

The α, β, γ and δ are all 2 × 2 constant matrices and U a 4 × 4 matrix. In [6] it was
assumed, for simplicity, that α, β, γ and δ are all Hermitian. Then it followed that the α, etc,
all commute with each other. This time, however, let us not make that assumption and treat
the α, etc, in their full generality. The reason for this generalization will become clear as we
proceed: see the few lines below (49).

The α, etc, are subject to the following conditions:

αβ† − βα† = 0, β†γ − γ †β = 0,

δγ † − γ δ† = 0, δ†α − α†δ = 0,
(34)

and

γ †α − β†δ = σ0, αγ † − βδ† = σ0, (35)
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where σ0 is the 2 × 2 unit matrix. The above conditions are necessary and sufficient for the
self-adjointness of the KE operator. The inverse U−1 is given by

U−1 = e−iθ

(
γ † −β†

−δ† α†

)
. (36)

If we assume invariance under space reflection, x → −x, we obtain

α = γ †, β = β†, δ = δ†. (37)

Consider the Schrödinger equation of the form of

−ψ ′′
1 (x) +

∫ ∞

−∞
dx ′[V11(x, x ′)ψ1(x

′) + V12(x, x ′)ψ2(x
′)] = Eψ1(x), (38)

−ψ ′′
2 (x) +

∫ ∞

−∞
dx ′[V21(x, x ′)ψ1(x

′) + V22(x, x ′)ψ2(x
′)] = Eψ2(x), (39)

with the 2 × 2 potential matrix

V (x, x ′) =
(

V11(x, x ′) V12(x, x ′)

V21(x, x ′) V22(x, x ′)

)
. (40)

We require that V (x, x ′) be Hermitian. Let us assume that the matrix elements of V (x, x ′) are
linear combinations of the vi(x, x ′) of (3). Then V (x, x ′) in its most general form is given by

V11(x, x ′) = f1v1(x, x ′) + f2v2(x, x ′) + f3v3(x, x ′),
V12(x, x ′) = V ∗

21(x, x ′) = g1 eiηv1(x, x ′) + g2v2(x, x ′) + g3v3(x, x ′), (41)

V22(x, x ′) = h1v1(x, x ′) + h2v2(x, x ′) + h3v3(x, x ′),

where fi, gi, hi (i = 1, 2) and η are all real constants. Thus we have ten parameters.
One may wonder whether or not one can obtain a more general situation by assuming

g1 eiη1 , g2 eiη2 and g3 eiη3 . This is not the case however. The part of the phase that is common
among these three phases, which can be chosen as eiη3 , can be eliminated by a constant unitary
transformation of the Hamiltonian, leaving no physical effects. Recall that the g2 part of
the interaction is anti-symmetric, i.e., v2(x, x ′) = −v2(−x,−x ′), while the other parts are
symmetric. The g2 part connects even-parity states to odd-parity states. The constant phase
factor eiη2 can be absorbed into the relative phase between the even- and odd-parity states.
This has no physical consequences.

Prescriptions A and B applied to the Schrödinger equation lead to

C+




ψ ′
1+

ψ ′
2+

ψ1+

ψ2+


 = C−




ψ ′
1−

ψ ′
2−

ψ1−
ψ2−


 , (42)

where

C+ = 1

2




2 + f2 g2 −f1 −g1 eiη

g2 2 + h2 −g1 e−iη −h1

f3 g3 2 − f2 −g2

g3 h3 −g2 2 − h2


 , (43)

and C− is obtained from C+ by reversing the signs of fi, gi and hi simultaneously (but not the
sign of η.) The U of the boundary condition at x = 0 is given by

U = −
(

α β

δ γ

)
= C−1

+ C−. (44)
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We observe that, when the signs of fi, gi and hi are reversed in U = C−1
+ C−, U is transformed

to U−1 = C−1
− C+. Then α, β, γ and δ are respectively transformed to γ †, −β†, α† and −δ†.

For illustration let us consider the case with f2 = g2 = h2 = 0. The left–right symmetry
holds in this case and the number of the parameters in the pseudo-potential is reduced from
ten to seven. Let us write α as

α = a0σ0 +
3∑

i=1

aiσi, (45)

and similarly for β, γ and δ with coefficients b0 and bi , etc. By working out (44) we obtain

a0 = c0 = −[
16 − (

f1h1 − g2
1

)(
f3h3 − g2

3

)]/
(16�),

a1 = c∗
1 = [g3(f1 + h1) + g1(f3 e−iη + h3 eiη)]/(4�),

(46)
a2 = c∗

2 = i[g3(f1 − h1) − g1(f3 e−iη − h3 eiη)]/(4�),

a3 = c∗
3 = (f1f3 − h1h3 + 2ig1g3 sin η)/(4�),

b0 = −[
4(f1 + h1) + (f3 + h3)

(
f1h1 − g2

1

)]/
(8�),

b1 = −[
4g1 cos η − g3

(
f1h1 − g2

1

)]/
(4�),

(47)
b2 = g1 sin η/�,

b3 = −[
4(f1 − h1) − (f3 − h3)

(
f1h1 − g2

1

)]/
(8�),

d0 = [
4(f3 + h3) + (f1 + h1)

(
f3h3 − g2

3

)]/
(8�),

d1 = −[(
f3h3 − g2

3

)
g1 cos η − 4g3

]/
(4�),

(48)
d2 = (

f3h3 − g2
3

)
g1 sin η

/
(4�),

d3 = [
4(f3 − h3) − (f1 − h1)

(
f3h3 − g2

3

)]/
(8�),

where

16� = 16 + 4(f1f3 + 2g1g3 cos η + h1h3) +
(
f1h1 − g2

1

)(
f3h3 − g2

3

)
. (49)

Note that ai and ci (i = 1, 2, 3) are generally complex while others are all real.
Conditions (34) and (35) are satisfied. In [6] it was assumed for simplicity that α, etc,
are all Hermitian. It is clear that this assumption does not hold in general.

Once α, etc, are obtained, the transmission and reflection coefficients, T and R, can be
worked out. The T and R depend on all parameters including η. The seven parameters are all
physically meaningful ones. We should add that the expressions for T and R given in [6] are
in terms of Hermitian α, etc. When α, etc, are not necessarily Hermitian, those expressions
have to be modified. In (36) for TL and (39) for RR of [6], all the α, etc, should be replaced
by their respective Hermitian adjoints. Alternatively TL and RR can be obtained from TR of
(37) and RL of (38) respectively, by substitutions: θ → −θ, α → γ †, γ → α†, β → β† and
δ → δ† (or equivalently by θ → −θ, α → γ †, γ → α†, β → −β†, δ → −δ† and k → −k).

If we require that α, etc, be all Hermitian, we have to introduce constraints

η = 0, g1(f3 − h3) − g3(f1 − h1) = 0, (50)

which leads to

a2 = b2 = c2 = d2 = 0,
a1

a3
= b1

b3
= c1

c3
= d1

d3
= 2g1

f1 − h1
= 2g3

f3 − h3
. (51)
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Here it is understood that f1 − h1 �= 0 and f3 − h3 �= 0. If f1 − h1 = 0 and f3 − h3 = 0, then
a3 = b3 = c3 = d3 = 0. The two constraints of (50) reduce the number of parameters from
seven to five. This is completely consistent with what was found in [6].

We have assumed left–right symmetry in the above but foresee no difficulty in working
out cases without such symmetry. The ten parameters that appear in such a general case are
all physically meaningful ones.

Let us consider the time-reversal aspect of the system. It is understood that we deal with the
time-dependent Schrödinger equation ih̄∂ψ(x, t)/∂t = Hψ(x, t). The usual interpretation of
time-reversal invariance is that, if ψ(x, t) is a solution, so is ψ∗(x,−t). If U is a real matrix,
i.e., if U = U ∗, then time-reversal invariance holds. In the general case that we examined
above, U is not real. But U remains the same when its complex conjugate is taken and channels
1 and 2 are interchanged. If we define the time-reversal operation by

ψ(x, t) → P12ψ
∗(x,−t), (52)

where P12 interchanges channels 1 and 2, and if the Hamiltonian is free from other interactions
that are affected by P12, then the system is invariant under time reversal. This is the case if
the pseudo-potential is the only interaction in the Hamiltonian. Let us add that, if there are
three channels coupled, we can have more phase factors in the interaction. Then time reversal
may be violated in nontrivial way. This aspect seems to have similarity to the time-reversal
violation that arises in the Maskawa–Kobayashi model of the weak interactions [22].

As a possible model of quantum memory WY considered a special case of (41) in which
all parameters other than f3, g1 and h3 are set to zero. Furthermore they set f3 = −h3. For
WY’s model (46)–(49) are reduced to

a0 = c0 = −[16 − (g1f3)
2]/(16�), a1 = c∗

1 = 0,

a2 = c∗
2 = −ig1f3/(2�), a3 = c∗

3 = 0,
(53)

b0 = 0, b1 = −g1/�, b2 = 0, b3 = −g2
1f3

/
(4�), (54)

d0 = 0, d1 = g1f
2
3

/
(4�), d2 = 0, d3 = f3/�, (55)

where

16� = 16 + (g1f3)
2. (56)

Conditions (34) and (35) are satisfied. Unless g1f3 = 0, the α and γ are non-Hermitian. The
commutator [α, γ ] vanishes but all other commutators between α, etc, are non-zero. This
situation is different from that examined in [6]. (Note that WY’s g3 of this two-channel model
corresponds to our f3.)

Let us examine if unitarity is satisfied in the transmission–reflection problem of this
model. If a wave is incident in channel 1 from the left, the wavefunction can be written as

ψ1 =
{

eikx + RL11 e−ikx for x < 0

TL11 eikx for x > 0,
(57)

ψ2 =
{

RL21 e−ikx for x < 0

TL21 eikx for x > 0.
(58)

With the pseudo-potential with g1 and f3, we have left–right symmetry. Hence the T and R are
independent of the direction of the incident wave and we can suppress subscript L. We obtain

T11 = 8k2 − ig2
1f3k(

g2
1 + 4k2

)
(2 + if3k)

, (59)
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R11 = −2g2
1 + 4if3k

3(
g2

1 + 4k2
)
(2 + if3k)

, (60)

T21 = R21 = −2ig1k

g2
1 + 4k2

. (61)

These coefficients satisfy

|T11|2 + |R11|2 + |T21|2 + |R21|2 = 1. (62)

It is interesting that there is a bound state with the binding energy κ2
1 = g2

1

/
4, irrespective of

the sign of g1. If f3 > 0 there is another bound state with the binding energy κ2
3 = 4

/
f 2

3 .

6. Summary and discussion

We have examined the relationship between the Fermi pseudo-potential à la WY and point
interactions as SAEs of the KE operator in one dimension. The pseudo-potential is a convenient
device which enables us to obtain the SAEs. We considered one-channel and two-channel
cases. In the one-channel case, the Fermi pseudo-potential that WY developed contains
three real parameters. The SAEs also contain, apart from the trivial parameter θ , three real
parameters. We have found explicit relations between the three parameters of the pseudo-
potential and those of the SAEs.

In passing let us mention that WY raised a question as to under what conditions Bethe’s
ansatz for a many-body system [23, 24] still holds when the δ-function is replaced by the
Fermi pseudo-potential. See the first paragraph of part B of their paper [1]. This question was
examined within the context of SAEs of the KE operator [13, 14, 25]. Let us also mention that
the point interactions in the form of SAEs of the one-channel case can be interpreted in terms
of renormalized short-range potentials as was pointed out by Cheon and Shigehara [26]. For
more recent development in this connection see [27]. It would be interesting to examine the
pseudo-potential, in particular, the definition of δ′

p(x), in the light of Cheon et al’s work and
also extend such an analysis to the two-channel case.

In the two-channel case the pseudo-potential provides us with more general SAEs than
obtained earlier [6]. This is in contrast to what was suggested towards the end of [6]. The two-
channel pseudo-potential can have ten parameters, which means that the pseudo-potential can
represent a ten-parameter family of SAEs. If the pseudo-potential is the only interaction that
is contained in the Hamiltonian of the system, time-reversal invariance holds. Recall that, in
[6], a family of SAEs with eight parameters (including θ3) was obtained. If we impose space
symmetry the number of the parameters is reduced from ten to seven. The corresponding
number of the parameters that was obtained in [6] is five. When time-reversal invariance
holds, the S-matrix of a two-channel system in one dimension can be expressed in terms of a
4 × 4 K-matrix that is real and symmetric. The S-matrix has ten real parameters. This is so
irrespective of the form of the interaction as long as it conforms to time-reversal invariance. It
is interesting that the number of the parameters of the S-matrix and that of the SAEs coincide.

As WY advocated the two-channel pseudo-potential can be a very powerful tool with
which one can construct models of quantum memory, an essential component of quantum
computing.
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